# Lecture 2: Variables, Vectors and Matrices in MATLAB

Dr. Mohammed Hawa Electrical Engineering Department University of Jordan

#### Variables in MATLAB

- Just like other programming languages, you can define variables in which to store values.
- All variables can by default hold matrices with scalar or complex numbers in them.
- You can define as many variables as your PC memory can hold.
- Values in variables can be inspected, used and changed
- Variable names are casesensitive, and show up in the Workspace.



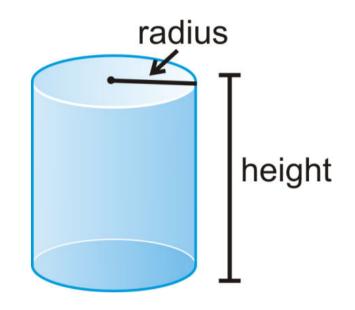
## Variables

- You can change the value in the variable by over-writing it with a new value
- Remember that variables are case-sensitive (easy to make a mistake)
- Always left-to right>> variable = expression

```
>> b = 12
    12
>> b = 14
    14
>> B = 88
    88
>> c = a + b
    21
>> c = a / b
    0.5000
```

## Exercise

- Develop MATLAB code to find Cylinder volume and surface area.
- Assume radius of 5 m and height of 13 m.



$$V = \pi r^2 h$$

$$A = 2\pi r^2 + 2\pi rh = 2\pi r(r+h)$$

## Solution

```
>> r = 5
>> h = 13
    13
>> Volume = pi * r^2 * h
Volume =
  1.0210e+003
>> Area = 2 * pi * r * (r + h)
Area =
  565.4867
```

## Useful MATLAB commands

| Command         | Description                                                                           |
|-----------------|---------------------------------------------------------------------------------------|
| clc             | Clears the Command window.                                                            |
| clear           | Removes all variables from memory.                                                    |
| clear var1 var2 | Removes the variables var1 and var2 from memory.                                      |
| exist('name')   | Determines if a file or variable exists having the name 'name'.                       |
| quit            | Stops MATLAB.                                                                         |
| who             | Lists the variables currently in memory.                                              |
| whos            | Lists the current variables and sizes, and indicates if they have<br>imaginary parts. |
| :               | Colon; generates an array having regularly spaced elements.                           |
| ,               | Comma; separates elements of an array.                                                |
| ;               | Semicolon; suppresses screen printing; also denotes a new row                         |
|                 | in an array.                                                                          |
|                 | Ellipsis; continues a line.                                                           |

## Vectors and Matrices (Arrays)

- So far we used MATLAB variables to store a single value.
- We can also create MATLAB arrays that hold multiple values
  - List of values (1D array) called **Vector**
  - Table of values (2D array) called **Matrix**
- Vectors and matrices are used extensively when solving engineering and science problems.

## Row Vector

- Row vectors are special cases of matrices.
- This is a 7-element row vector  $(1 \times 7 \text{ matrix})$ .
- Defined by enclosing numbers within square brackets [ ] and separating them by , or a space.

```
>> C = [10, 11, 13, 12, 19, 16, 17]

C =

10    11    13    12    19    16    17

>> C = [10    11    13    12    19    16    17]

C =

10    11    13    12    19    16    17
```



## Column Vector

- Column vectors are special cases of matrices.
- This is a 7-element column vector ( $7 \times 1$  matrix).
- Defined by enclosing numbers within [ ] and separating them by semicolon;

```
>> R = [10; 11; 13; 12; 19; 16; 17]

R =

10
11
13
12
19
16
17
```



## Matrix

- This is a  $3 \times 4$ -element matrix.
- It has 3 rows and 4 columns (dimension  $3 \times 4$ ).
- Spaces or commas separate elements in different columns, whereas semicolons separate elements in different rows.
- A dimension  $n \times n$  matrix is called *square* matrix.

| >>  | M | = | [1, |   | 3, | 2, | 9; | ; ( | ŝ, | 7, | 8, | - | ; | 7, | 4, | 6, | 0] |
|-----|---|---|-----|---|----|----|----|-----|----|----|----|---|---|----|----|----|----|
| M = | = |   |     |   |    |    |    |     |    |    |    |   |   |    |    |    |    |
|     |   | 1 |     |   | 3  |    | 2  |     |    | 9  |    |   |   |    |    |    |    |
|     |   | 6 |     | 1 | 7  |    | 8  |     |    | 1  |    |   |   |    |    |    |    |
|     |   | 7 |     |   | 4  |    | 6  |     |    | 0  |    |   |   |    |    |    |    |
|     |   |   |     |   |    |    |    |     |    |    |    |   |   |    |    |    |    |
|     |   |   |     |   |    |    |    |     |    |    |    |   |   |    |    |    |    |
| >>  | M | = | [1  | 3 | 2  | 9; | 6  | 7   | 8  | 1; | 7  | 4 | 6 | 0] |    |    |    |
| M = | = |   |     |   |    |    |    |     |    |    |    |   |   |    |    |    |    |
|     |   | 1 |     |   | 3  |    | 2  |     |    | 9  |    |   |   |    |    |    |    |
|     |   | 6 |     | 1 | 7  |    | 8  |     |    | 1  |    |   |   |    |    |    |    |
|     |   | 7 |     |   | 4  |    | 6  |     |    | 0  |    |   |   |    |    |    |    |



## Transpose of a Matrix

- The transpose operation interchanges the rows and columns of a matrix.
- For an  $m \times n$  matrix **A** the new matrix **A**<sup>T</sup> (read "A transpose") is an  $n \times m$  matrix.
- In MATLAB, the A' command is used for transpose.

$$\mathbf{A} = \begin{bmatrix} -2 & 6 \\ -3 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 6 \\ -3 & 5 \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} -2 & -3 \\ 6 & 5 \end{bmatrix}$$

## Exercise

```
>> B = [5 6 7 8]
B =
5 6 7 8

>> B'
ans =
5
6
7
8
```

- What happens to a row vector when transposed?
- What happens to a column vector when transposed?

## Useful Functions

| length(A)         | Returns either the number of elements of A if A                     |
|-------------------|---------------------------------------------------------------------|
|                   | is a vector or the largest value of <i>m</i> or <i>n</i> if A is an |
|                   | $m \times n$ matrix                                                 |
| size(A)           | Returns a row vector [m n] containing the                           |
|                   | sizes of the $m \times n$ matrix A.                                 |
| max(A)            | For vectors, returns the largest element in A.                      |
|                   | For matrices, returns a row vector containing the                   |
|                   | maximum element from each column.                                   |
|                   | If any of the elements are complex, max (A)                         |
|                   | returns the elements that have the largest                          |
|                   | magnitudes.                                                         |
| $[v,k] = \max(A)$ | Similar to max (A) but stores the maximum                           |
|                   | values in the row vector v and their indices in                     |
|                   | the row vector k.                                                   |
| min(A)            | Like max but returns minimum values.                                |
| and               |                                                                     |
| [v,k] = min(A)    |                                                                     |

## More Useful Functions

| sort(A)          | Sorts each column of the array A in ascending   |
|------------------|-------------------------------------------------|
|                  | order and returns an array the same size as A.  |
| sort(A,DIM,MODE) | Sort with two optional parameters:              |
|                  | DIM selects a dimension along which to sort.    |
|                  | MODE is sort direction ('ascend' or 'descend'). |
| sum(A)           | Sums the elements in each column of the array A |
|                  | and returns a row vector containing the sums.   |
| sum(A,DIM)       | Sums along the dimension DIM.                   |



#### Exercises

```
>> X = [4 9 2 5]
X =
>> length(X)
ans =
>> size(X)
ans =
     1
>> min(X)
ans =
```

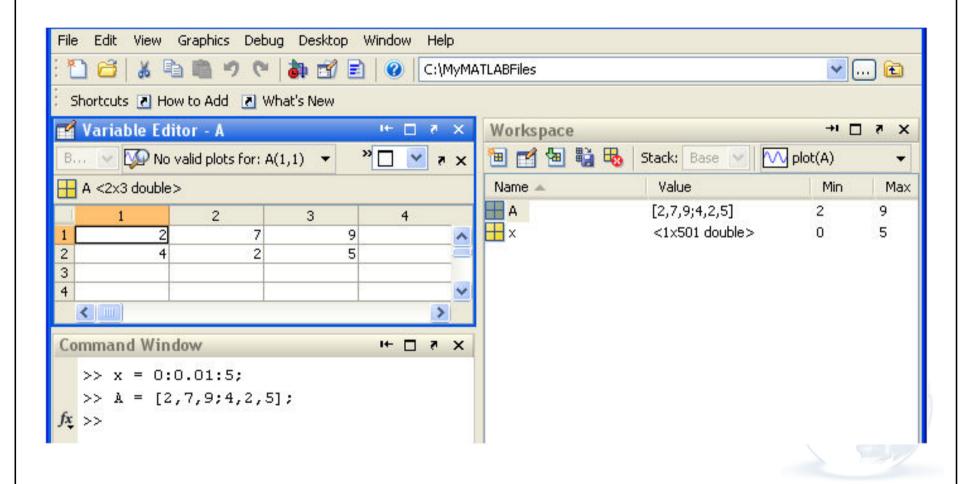
```
>> M = [1 6 4; 3 7 2]
>> size(M)
>> length(M)
>> \max(M)
>> [a,b] = max(M)
>> sort(M)
>> sort(M, 1, 'descend')
>> sum(M)
\gg sum(M, 2)
```

#### Solution

```
>> M = [1 6 4; 3 7 2]
M =
>> size(M)
ans =
>> length(M)
ans =
     3
\gg max(M)
ans =
\gg [a,b] = max(M)
```

```
>> sort(M)
ans =
                 2
>> sort(M, 1, 'descend')
ans =
>> sum(M)
ans =
    4 13
                6
\gg sum(M, 2)
ans =
    11
    12
```

## The Variable Editor [from Workspace or openyar ('A')]



## Creating Big Matrices

- What if you want to create a Matrix that contains 1000 element (or more)?
- Writing each element by hand is difficult, time-consuming and error-prone.
- MATLAB allows simple ways to quickly create matrices, such as:
- Using the colon: operator (very popular).
- Using linspace() and logspace() functions (less popular, but useful).

## Using the colon operator

- MATLAB command X = J:D:K creates vector X = [J, J+D, ..., J+m\*D] where m = fix((K-J)/D).
- In other words, it creates a vector X of values **starting** at J, **ending** with K, and with **spacing** D.
- Notice that the last element is K if K J is an integer multiple of D. If not, the last value is *less than* J.
- MATLAB command J:K is the same as J:1:K.
- Note:
  - J:K is empty if J > K.
  - J:D:K is empty if D == 0, if D > 0 and J > K, or if D < 0 and J < K.

## Example 1



## Example 2

```
>> x = 7:-1:2
x =
>> x = 5:0.1:5.9
x =
 Columns 1 through 5
   5.0000 5.1000 5.2000 5.3000 5.4000
 Columns 6 through 10
   5.5000 5.6000 5.7000 5.8000 5.9000
>> y = 5:0.1:5.9; % what happened here?!
>>
>> % now create a 'column' vector from 1 to 10 using :
```

#### Alternatives to colon

- linspace command creates a linearly spaced row vector, but instead you specify the number of values rather than the increment.
- The syntax is linspace(x1, x2, n), where x1 and x2 are the lower and upper limits and n is the number of points.
- If n is omitted, the number of points defaults to 100.
- logspace command creates an array of logarithmically spaced elements.
- Its syntax is logspace (a,b,n), where n is the number of points between 10<sup>a</sup> and 10<sup>b</sup>.
- If n is omitted, the number of points defaults to 50.

## Exercise

```
>> x = linspace(5,8,3)

x =

5.0000 6.5000 8.0000

>> x = logspace(-1,1,4)

x =

0.1000 0.4642 2.1544 10.0000
```

## Special: ones, zeros, rand

```
>> a = ones(2,4)
>> b = zeros(4, 3) % null matrix
h =
>> c = rand(2, 4)
   0.8147 0.1270 0.6324 0.2785
   0.9058 0.9134 0.0975 0.5469
% random values drawn from the standard
% uniform distribution on the open
```

% interval(0,1)

```
>> eye(4) % identity matrix
ans =
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
                   3
>> I = eye(3)
T_{\cdot} =
>> A*I
ans =
                   6
```

## Null and Identity Matrix

$$0A = A0 = 0$$
$$IA = AI = A$$

#### Matrix Determinant & Inverse

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= aei + bfg + cdh - ceg - bdi - afh.$$

$$\begin{vmatrix} a_{32} & a_{33} & a_{32} & a_{22} & a_{23} \end{vmatrix}$$

$$\begin{vmatrix} a_{23} & a_{21} & a_{11} & a_{13} & a_{11} \\ a_{33} & a_{31} & a_{31} & a_{33} & a_{21} \end{vmatrix}$$

$$\begin{vmatrix} a_{21} & a_{22} & a_{21} & a_{11} & a_{12} \\ a_{31} & a_{32} & a_{31} & a_{32} & a_{21} \end{vmatrix}$$

```
\Rightarrow A = [1 2 3; 2 3 1; 3 2 1]
>> det(A) % determinant
ans =
   -12
>> inv(A) % inverse
ans =
   -0.0833 \quad -0.3333 \quad 0.5833
  -0.0833 0.6667 -0.4167
   0.4167
             -0.3333 0.0833
>> A^-1
ans =
   -0.0833 \quad -0.3333 \quad 0.5833
  -0.0833 0.6667
                        -0.4167
   0.4167
             -0.3333
                       0.0833
```

## Accessing Matrix Elements

```
>> C = [10, 11, 13, 12, 19, 16, 17]
   10 11 13 12 19 16
                                     17
>> C(4)
ans =
   12
>> C(1,4)
ans =
   12
>> C(20)
??? Index exceeds matrix dimensions.
```

## Notes

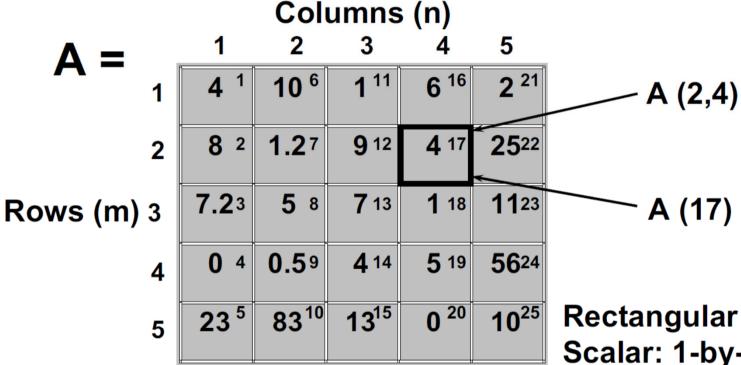
- Use () not [] to access matrix elements.
- The row and column indices are NOT zero-based, like in C/C++.
- The first is row number, followed by the column number.
- For matrices and vectors, you can use one of three indexing methods: matrix row and column indexing; linear indexing; and logical indexing.
- You can also use ranges (shown later).

#### Accessing Matrix Elements

```
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]
M =
>> M(2, 3)
ans =
>> M(3, 1)
ans =
>> M(0, 1)
??? Subscript indices must either be real
positive integers or logicals.
>> M(9)
ans =
```



## Matrix Linear Indexing



 $A = 5 \times 5$  matrix.

**Rectangular Matrix:** 

Scalar: 1-by-1 array

**Vector: m-by-1 array** 

1-by-n array

Matrix: m-by-n array

## Indexing: Sub-matrix

- v(2:5) represents the second through fifth elements i.e., v(2), v(3), v(4), v(5).
- v(2:end) represents the second till last element of v.
- v(:) represents all the row or column elements of vector v.
- A(:, 3) denotes all elements in the third column of matrix A.
- A(:, 2:5) denotes all elements in the second through fifth columns of A.
- A(2:3,1:3) denotes all elements in the second and third rows that are also in the first through third columns.
- A (end, :) all elements of the last row in A.
- A(:, end) all elements of the last column in A.
- v = A(:) creates a vector v consisting of all the columns of A stacked from first to last.

#### Exercise

```
>> v = 10:10:70
V =
    10
           20
                 30
                        40
                               50
                                     60
                                            70
>> v(2:5)
ans =
    20
           30
                 40
                        50
>> v(2:end)
ans =
          30
                 40
                        50
    20
                               60
                                     70
>> v(:)
ans =
    10
    20
    30
    40
    50
    60
    70
```



## Exercise

```
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1
11; 0 0.5 4 5 56; 23 83 13 0 10]
A =
   4.0000 10.0000 1.0000 6.0000
                                    2.0000
         1.2000 9.0000 4.0000 25.0000
   8.0000
   7.2000
          5.0000 7.0000 1.0000 11.0000
          0.5000 4.0000 5.0000 56.0000
  23.0000 83.0000 13.0000
                                   0.0000
>> A(:,3)
ans =
    13
>> A(:,2:5)
ans =
             1.0000
   10.0000
                       6.0000
                                 2.0000
   1.2000
            9.0000
                       4.0000
                                25.0000
  5.0000
           7.0000
                       1.0000
                               11.0000
0.5000
           4.0000
                       5.0000
                                56.0000
   83.0000
            13.0000
                               10.0000
Like of the State
>> A(2:3,1:3)
ans =
             1.2000
                       9.0000
    8.0000
    7.2000
             5.0000
                       7.0000
```

```
>> A(end,:)
ans =
          83
    23
                 13
                         0
                              10
>> A(:,end)
ans =
    25
    11
    56
    10
>> v = A(:)
\nabla =
    4.0000
    8.0000
    7.2000
          0
   23.0000
   10.0000
    1.2000
    5.0000
    0.5000
   83.0000
    1.0000
    9.0000
    7.0000
    4.0000
   13.0000
    6.0000
    4.0000
    1.0000
    5.0000
    2.0000
   25.0000
   11.0000
   56.0000
   10.0000
```

## Linear indexing: Advanced

```
>> A = 5:5:50
A =
 5 10 15 20 25 30 35 40 45 50
>> A([1 3 6 10])
ans =
      15 30 50
>> A([1 3 6 10]')
ans =
      15 30 50
>> A([1 3 6; 7 9 10])
ans =
      15
           30
   35
         45
           50
% indexing into a vector with a nonvector,
the shape of the indices is honored
```

## Linear indexing is useful: find

```
\Rightarrow A = [1 2 3; 4 5 6; 7 8 9]
A =
  B = find(A > 5) % returns linear index
B =
   A(B) % same as A(find(A > 5))
ans =
     9
```

## Advanced: Logical indexing

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =

      1
      2
      3

      4
      5
      6

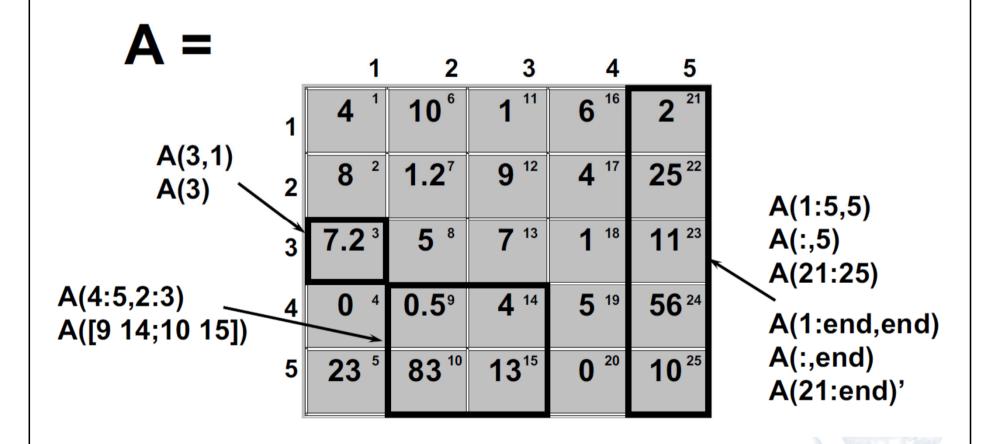
      7
      8
      9

>> B = logical([0 1 0; 1 0 1; 0 0 1])
>> A(B)
ans =
          6
```

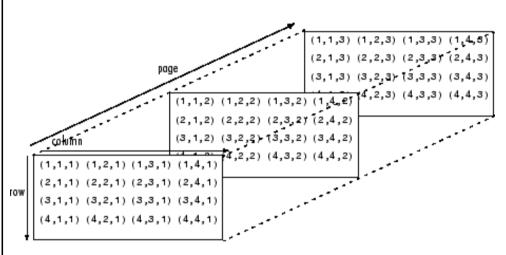
## Logical indexing is also useful!

```
>> A = [1 2 3; 4 5 6; 7 8 9]
>> B = (A > 5) % true or false
>> A(B) % same as A(A > 5)
ans =
```

# Subscripting Examples



## More dimensions possible



- The first index references array dimension 1, the row.
- The second index references dimension 2, the column.
- The third index references dimension 3, the page.

| >> rand(4,4,3)                       |                                      |                                      |                                      |  |
|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| ans(:,:,1) =                         |                                      |                                      |                                      |  |
| 0.3922<br>0.6555                     | 0.7060<br>0.0318<br>0.2769<br>0.0462 | 0.0971<br>0.8235<br>0.6948<br>0.3171 | 0.9502<br>0.0344<br>0.4387<br>0.3816 |  |
| ans(:,:,2) =                         |                                      |                                      |                                      |  |
|                                      | 0.4456<br>0.6463<br>0.7094<br>0.7547 | 0.2760<br>0.6797<br>0.6551<br>0.1626 | 0.1190<br>0.4984<br>0.9597<br>0.3404 |  |
| ans(:,:,3) =                         |                                      |                                      |                                      |  |
| 0.5853<br>0.2238<br>0.7513<br>0.2551 | 0.5060<br>0.6991<br>0.8909<br>0.9593 | 0.5472<br>0.1386<br>0.1493<br>0.2575 | 0.8407<br>0.2543<br>0.8143<br>0.2435 |  |

# Extending Matrices

- You can add extra elements to a matrix by creating them directly using ()
- Or by concatenating (appending) them using [ , ] or [ ; ]
- If you don't assign array elements, MATLAB gives them a default value of 0

```
>> h = [12 11 14 19 18 17]
h =
    12 11 14 19 18 17

>> h = [h 13]
h =
    12 11 14 19 18 17 13

>> h(10) = 1
h =
    12 11 14 19 18 17 13 0 0 1
```



## Example

```
>> a = [2 \ 4 \ 20]
a =
        4
                 20
>> b = [9, -3, 6]
     9
>> [a b]
ans =
                 20
                              -3
>> [a, b]
ans =
                 20
>> [a; b]
ans =
                 20
     9
          -3
                  6
```

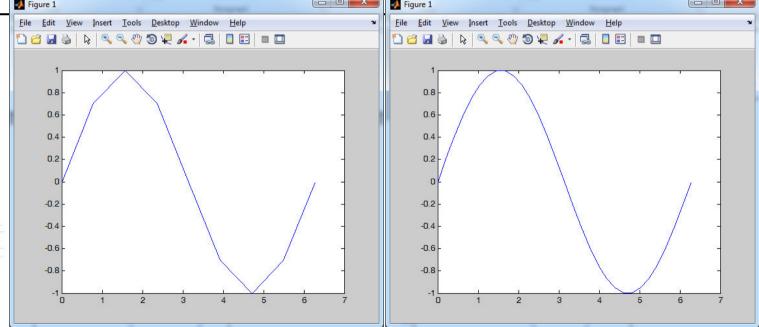


## Functions on Arrays

- Standard MATLAB functions (sin, cos, exp, log, etc) can apply to vectors and matrices as well as scalars.
- They operate on array arguments to produce an array result the same size as the array argument x.
- These functions are said to be vectorized functions.
- In this example y is  $[\sin(1), \sin(2), \sin(3)]$
- So, when writing functions (later lectures) remember input might be a vector or matrix.



```
>> x = [1, 2, 3]
x =
1 2 3
>> y = sin(x)
y =
0.8415 0.9093 0.1411
```



Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

## Matrix vs. Array Arithmetic

- Multiplying and dividing vectors and matrices is different than multiplying and dividing scalars (or arrays of scalars).
- This is why MATLAB has two types of arithmetic operators:
  - Array operators: where the arrays operated on have the same size. The operation is done element-by-element (for all elements).
  - Matrix operators: dedicated for matrices and vectors. Operations are done using the matrix as a whole.

## Matrix vs. Array Operators

| Symbol | Operation             | Symbol | Operation            |
|--------|-----------------------|--------|----------------------|
| +      | Matrix addition       | +      | Array addition       |
| _      | Matrix subtraction    | _      | Array subtraction    |
| *      | Matrix multiplication | • *    | Array multiplication |
| /      | Matrix division       | • /    | Array division       |
|        | Left matrix division  | . \    | Left array division  |
| ^      | Matrix power          | • ^    | Array power          |

<sup>\*</sup> idivide() allows integer division with rounding options



#### Matrix/Array Addition/Subtraction

- Matrices and arrays are treated the same when adding and subtracting.
- The two matrices should have identical size.
- Their sum or difference has the same size, and is obtained by adding or subtracting the corresponding elements.
- Addition and subtraction are associative and commutative.

$$\begin{bmatrix} 6 & -2 \\ 10 & 3 \end{bmatrix} + \begin{bmatrix} 9 & 8 \\ -12 & 14 \end{bmatrix} = \begin{bmatrix} 15 & 6 \\ -2 & 17 \end{bmatrix}$$

$$(A + B) + C = A + (B + C)$$
  
 $A + B + C = B + C + A = A + C + B$ 

# More ...

• A scalar value at either side of the operator is expanded to an array of the same size as the other side of the operator.

$$[6,3] + 2 = [8,5]$$
  
 $[8,3] - 5 = [3,-2]$   
 $[6,5] + [4,8] = [10,13]$   
 $[6,5] - [4,8] = [2,-3]$ 



#### Array Multiplication

- Element-by-element multiplication.
- Only for arrays that are the same size.
- Use the . \* operator not the \* operator.
- Not the same as matrix multiplication.
- Useful in students make the mistake of using \*

$$\mathbf{A} = \begin{bmatrix} 11 & 5 \\ -9 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -7 & 8 \\ 6 & 2 \end{bmatrix}$$

$$C = A.*B$$

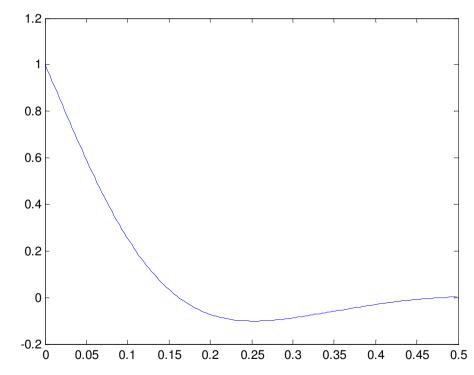
Useful in programming, but 
$$C = \begin{bmatrix} 11(-7) & 5(8) \\ -9(6) & 4(2) \end{bmatrix} = \begin{bmatrix} -77 & 40 \\ -54 & 8 \end{bmatrix}$$

#### Using Array Multiplication (Plot)

- Plot the following function:
- Notice the use of .\* operator

$$y(t) = e^{-8t} \sin\left(9.7t + \frac{\pi}{2}\right)$$

```
>> t = 0:0.003:0.5;
>> y = exp(-8*t).*sin(9.7*t+pi/2);
>> plot(t,y)
```



#### Matrix Multiplication

- If A is an n × m matrix and B is a m × p matrix, their matrix product AB is an n × p matrix, in which the m entries across the rows of A are multiplied with the m entries down the columns of B.
- In general, AB ≠ BA for matrices. Be extra careful.

$$m \times p$$
 matrix, their matrix product AB 
$$\begin{bmatrix} 2 & 7 \\ 6 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 2(3) + 7(9) \\ 6(3) - 5(9) \end{bmatrix} = \begin{bmatrix} 69 \\ -27 \end{bmatrix}$$

across the rows of A are multiplied with 
$$\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = u_1w_1 + u_2w_2 + u_3w_3$$
 the  $m$  entries down

#### Matrix Multiplication

$$\begin{bmatrix} 6 & -2 \\ 10 & 3 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 9 & 8 \\ -5 & 12 \end{bmatrix} = \begin{bmatrix} (6)(9) + (-2)(-5) & (6)(8) + (-2)(12) \\ (10)(9) + (3)(-5) & (10)(8) + (3)(12) \\ (4)(9) + (7)(-5) & (4)(8) + (7)(12) \end{bmatrix}$$

$$= \begin{bmatrix} 64 & 24 \\ 75 & 116 \\ 1 & 116 \end{bmatrix}$$

$$(2.4-4)$$

$$3\begin{bmatrix} 2 & 9 \\ 5 & -7 \end{bmatrix} = \begin{bmatrix} 6 & 27 \\ 15 & -21 \end{bmatrix}$$

$$>>A = [2,9;5,-7];$$

$$>>3*A$$

#### Array Division

- Element-by-element division.
- Only for arrays that are the same size.
- Use the ./ operator not the / operator.
- Not the same as matrix division.
- Useful in mistake of using /

$$\mathbf{A} = \begin{bmatrix} 24 & 20 \\ -9 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -4 & 5 \\ 3 & 2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -4 & 5 \\ 3 & 2 \end{bmatrix}$$

$$C = A./B$$

Useful in programming, but 
$$C = \begin{bmatrix} 24/(-4) & 20/5 \\ -9/3 & 4/2 \end{bmatrix} = \begin{bmatrix} -6 & 4 \\ -3 & 2 \end{bmatrix}$$
 students make the

#### Matrix Division

• An  $n \times n$  square matrix **B** is called invertible (also nonsingular) if there exists an  $n \times n$  matrix **B**<sup>-1</sup> such that their multiplication is the identity matrix.

$$\frac{A}{B} = A B^{-1}$$

$$B B^{-1} = I$$

$$A = \begin{bmatrix} 1 & 5 & 6 \\ 6 & 5 & 4 \\ 4 & 6 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 6 \\ 6 & 5 & 4 \\ 4 & 6 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 6 \\ 6 & 5 & 4 \\ 4 & 6 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 15 \\ 2 & 15 & 15 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 15 \\ 2 & 15 & 15 \end{bmatrix}$$

### Matrix Division

```
>> A = [1 2 3; 3 2 1; 2 1 3];
>> B = [4 5 6; 6 5 4; 4 6 5];
>> A/B
ans =
   0.7000
            -0.3000
   -0.3000
          0.7000
                        0.0000
    1.2000
           0.2000
                       -1.0000
>> format rat
>> A/B
ans =
     7/10
                 -3/10
    -3/10
                  7/10
     6/5
                  1/5
```

### Matrix Left Division

- Use the left division operator (\) (back slash) to solve sets of linear algebraic equations.
- If A is n × n matrix and B is a column vector with n elements, then x = A\B is the solution to the equation Ax = B.
- A warning message is displayed if A is badly scaled or nearly singular.

```
6x + 12y + 4z = 70

7x - 2y + 3z = 5

2x + 8y - 9z = 64

>>A = [6,12,4;7,-2,3;2,8,-9];

>>B = [70;5;64];

>>Solution = A\B

Solution = 3
```

scaled or nearly singular. The solution is x = 3, y = 5, and z = -2.

## Homework: Mesh Analysis

KVL @ mesh 2:

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

KVL @ supermesh 1/3:

$$-7 + 1(i_1 - i_2) + 3(i_3 - i_2) + 1i_3 = 0$$

@ current source:

$$7 = i_1 - i_3$$

*Three* equations:

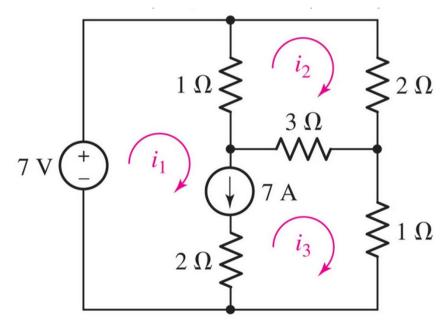
$$-i_1 + 6i_2 - 3i_3 = 0$$

$$i_1 - 4i_2 + 4i_3 = 7$$

$$i_1 - i_3 = 7$$

Solution:

$$i_1 = 9A$$
,  $i_2 = 2.5A$ ,  $i_3 = 2A$ 



## Just between us...

• Matrix division and matrix left division are related in MATLAB by the equation:

$$B/A = (A' \setminus B')' % reversing$$

• To see the details, type: doc mldivide or type: doc mrdivide

## Array Left Division

- The array left division A.\B (back slash) divides each entry of B by the corresponding entry of A.
- Just like B./A
- A and B must be arrays of the same size.
- A scalar value for either
   A or B is expanded to
   an array of the same
   size as the other.

# Array Power

$$B = A.^3$$

$$\mathbf{B} = \begin{bmatrix} 4^3 & (-5)^3 \\ 2^3 & 3^3 \end{bmatrix} = \begin{bmatrix} 64 & -125 \\ 8 & 27 \end{bmatrix} \qquad \begin{array}{c} 3. \text{ ^p} \\ 3.0. \text{ ^p} \end{array}$$

$$p = [2, 4, 5]$$

$$3.^{2}[2,4,5]$$

# Matrix Power

- A^k computes matrix power (exponent).
- In other words, it multiplies matrix **A** by itself *k* times.
- The exponent *k* requires a positive, real-valued integer value.
- Remember: this is repeated matrix
   multiplication

### Matrix Manipulation Functions

- diag: Diagonal matrices and diagonal of a matrix.
- det: Matrix determinant
- inv: Matrix inverse
- cond: Matrix condition number (for inverse)
- fliplr: Flip matrices left-right
- flipud: Flip matrices up and down
- repmat: Replicate and tile a matrix



## Matrix Manipulation Functions

- rot90: rotate matrix 90°
- tril: Lower triangular part of a matrix
- triu: Upper triangular part of a matrix
- cross: Vector cross product
- dot: Vector dot product
- eig: Evaluate eigenvalues and eigenvectors
- rank: Rank of matrix



- Define matrix A of dimension 2 by 4 whose (i,j) entries are A(i,j) = i+j
- Extract two 2 by 2 matrices A1 and A2 out of matrix A.
  - A1 contains the first two columns of A
  - A2 contains the last two columns of A
- Compute matrix B to be the sum of A1 and A2
- Compute the eigenvalues and eigenvectors of B
- Solve the linear system B x = b, where b has all entries = 2
- Compute the determinant of B, inverse of B, and the condition number of B
- NOTE: Use only MATLAB native functions for all above.

#### Solution

```
>> A = [0 1 2 3; 1 2 3 4]
A =
>> A1 = A(:,1:2)
A1 =
>> A2 = A(:, 3:4)
A2 =
>> B = A1 + A2
```

```
>> b = [2; 2]
b =
>> B\b
ans =
   -1.0000
    1.0000
>> det(B)
ans =
    -4
>> inv(B)
ans =
   -1.5000 1.0000
    1.0000 -0.5000
>> cond(B)
ans =
   17.9443
```

# Homework

- Solve as many problems from Chapter 1 as you can
- Suggested problems:
- 1.3, 1.8, 1.15, 1.26, 1.30
- Solve as many problems from Chapter 2 as you can
- Suggested problems:
- 2.3, 2.10, 2.13, 2.25, 2.26

